Phrase-Based Statistical Language Generation Using Graphical Models and Active Learning
نویسندگان
چکیده
Most previous work on trainable language generation has focused on two paradigms: (a) using a statistical model to rank a set of generated utterances, or (b) using statistics to inform the generation decision process. Both approaches rely on the existence of a handcrafted generator, which limits their scalability to new domains. This paper presents BAGEL, a statistical language generator which uses dynamic Bayesian networks to learn from semantically-aligned data produced by 42 untrained annotators. A human evaluation shows that BAGEL can generate natural and informative utterances from unseen inputs in the information presentation domain. Additionally, generation performance on sparse datasets is improved significantly by using certainty-based active learning, yielding ratings close to the human gold standard with a fraction of the data.
منابع مشابه
Phrase-based Statistical Language Generation using Graphical Models and Active Learning
Most previous work on trainable language generation has focused on two paradigms: (a) using a statistical model to rank a set of generated utterances, or (b) using statistics to inform the generation decision process. Both approaches rely on the existence of a handcrafted generator, which limits their scalability to new domains. This paper presents BAGEL, a statistical language generator which ...
متن کاملActive Learning for Statistical Phrase-based Machine Translation
Statistical machine translation (SMT) models need large bilingual corpora for training, which are unavailable for some language pairs. This paper provides the first serious experimental study of active learning for SMT. We use active learning to improve the quality of a phrase-based SMT system, and show significant improvements in translation compared to a random sentence selection baseline, wh...
متن کاملActive Learning for Multilingual Statistical Machine Translation
Statistical machine translation (SMT) models require bilingual corpora for training, and these corpora are often multilingual with parallel text in multiple languages simultaneously. We introduce an active learning task of adding a new language to an existing multilingual set of parallel text and constructing high quality MT systems, from each language in the collection into this new target lan...
متن کاملWord Ordering with Phrase-Based Grammars
We describe an approach to word ordering using modelling techniques from statistical machine translation. The system incorporates a phrase-based model of string generation that aims to take unordered bags of words and produce fluent, grammatical sentences. We describe the generation grammars and introduce parsing procedures that address the computational complexity of generation under permutati...
متن کاملStatistical Alignment Models for Translational Equivalence
The ever-increasing amount of parallel data opens a rich resource to multilingual natural language processing, enabling models to work on various translational aspects like detailed human annotations, syntax and semantics. With efficient statistical models, many cross-language applications have seen significant progresses in recent years, such as statistical machine translation, speech-to-speec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010